题意:给出n根小棒的长度stick[i],已知这n根小棒原本由若干根长度相同的长木棒(原棒)分解而来。求出原棒的最小可能长度。
思路:dfs+剪枝。蛮经典的题目,重点在于dfs剪枝的设计。先说先具体的实现:求出总长度sum和小棒最长的长度max,则原棒可能的长度必在max~sum之间,然后从小到大枚举max~sum之间能被sum整除的长度len,用dfs求出所有的小棒能否拼凑成这个长度,如果可以,第一个len就是答案。
下面就是关键的了,就是这道题dfs的实现和剪枝的设计:
1.以一个小棒为开头,用dfs看看能否把这个小棒拼凑成len长,如果可以,用vis[i]记录下用过的小棒,然后继续以另外一个小棒为开头,以此类推。
2.小棒的长度从大到小排序,这个就不解释了。
3.如果当前最长的小棒不能拼成len长,那么就返回前一步,更改前一步的最长小棒的组合情况(这里不能是全部退出),不用再继续搜索下去了。
4.最重要的,就是比如说17,9,9,9,9,8,8,5,2……如果当前最长小棒为17,它与第一个9组合之后dfs发现不能拼成len,那么17就不用和后面所有的9组合了,而直接和8开始组合。这个剪枝直接从TLE到16MS,很强大。
源代码:(160K 16MS)
#include<iostream>
#include<algorithm> using namespace std; const int Max = 65;
int n, len, stick[Max];
bool flag, vis[Max];
bool cmp(int a, int b){
return a> b; }
void dfs(int dep, int now_len, int u){ // dep为当前已被用过的小棒数,u为当前要处理的小棒。
if(flag) return; if(now_len == 0){ // 当前长度为0,寻找下一个当前最长小棒。 int k = 0; while(vis[k]) k ++; // 寻找第一个当前最长小棒。 vis[k] = true; dfs(dep + 1, stick[k], k + 1); vis[k] = false; return; } if(now_len == len){ // 当前长度为len,即又拼凑成了一根原棒。 if(dep == n) flag = true; // 完成的标志:所有的n根小棒都有拼到了。 else dfs(dep, 0, 0); return; } for(int i = u; i < n; i ++) if(!vis[i] && now_len + stick[i]< = len){ if(!vis[i-1] && stick[i] == stick[i-1]) continue; // 不重复搜索:最重要的剪枝。 vis[i] = true; dfs(dep + 1, now_len + stick[i], i + 1); vis[i] = false; } }
int main(){
while(scanf("%d", &n)&& n != 0){ int sum = 0; flag = false; for(int i = 0; i < n; i ++){ scanf("%d", &stick[i]); sum += stick[i]; } sort(stick, stick + n, cmp); // 从大到小排序。 for(len = stick[0]; len < sum; len ++) if(sum % len == 0){ // 枚举能被sum整除的长度。 memset(vis, 0, sizeof(vis)); dfs(0, 0, 0); if(flag) break; } printf("%d\n", len); } return 0; }